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Universal behavior of one-dimensional multispecies branching and annihilating random walks
with exclusion
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A directed percolation process with two symmetric particle species exhibiting exclusion in one dimension is
investigated numerically. It is shown that if the species are coupled by branchirgAB, B—BA), a
continuous phase transition will appear at the zero-branching-rate limit belonging to the same universality class
as that of the two component branching and annihilating random-walk model with two symmetric offsprings.
This class persists even if the branching is biased towards one of the species. If the two systems are not coupled
by branching but a hard-core interaction is allowed only the transition will occur at finite branching rate
belonging to the usual (t1)-dimensional directed percolation class.
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The study of phase transitions in low dimensions is arric (2-BARW29 and the asymmetri¢2-BARW23 cases
interesting and widely investigated todit,2]. Research on [Bs=1/2 vs 8,=2 for (i) and(ii), respectively.
nonequilibrium phase transitions occurring in one- Hard-core effects are conjectured to cause a series of new
dimensional coupled systems has nowadays drawn interesniversality classes in one dimensif6]. In this paper |
[3—14]. Several models have been found with transitions thapoint out that probably only a few universality classes
do not belong to the robust directed percolati@P) class €merge as the consequence of particle exclusion, because
[15—17 or to the parity conservingPC) class[18,19 which other symmetries e_md conservation laflike that of the PC
are the most prominent ones among one-component systenfdas$ will become irrelevant. .
Particle blocking which is common in one dimension has not " the present study first | show that in case of the two-
been taken into account in field theoretical descriptions of°MPonent single off-spring BARW modél-BARW1), de-

these models ye20,21. It has been known for some time ned as

that the pair contact proceg§24] can be regarded as a opl2 opl2

coupled system that exhibits DP class static exponents while A— AB, A— BA 1)

the spreading ones depend on initial densits. The field

theoretical investigation of Janss¢@l] predicts that in 78/2 78/2

coupled DP systems the symmetry between species is un- B— BA B—AB, 2

stable and generally a phase transition belongs to the class of

unidirectionally coupled DP where coupling between pairs of AAL@ BBL® 3)

species is relevant in one direction only. Such systems have ' '

been shown to describe also certain surface roughening pro- d g

cesseg9,10). AD DA, BD—DB, @)
Recently we have showf22] that in the two-component

annihilating random walkAA— &, BB—J) owing to the 0

hard-core interaction of particles dynamical exponents are AB—BA, (5)

nonuniversal. Some consequences of hard-core effects for
random walks in one dimension have been known for som@ continuous phase transition will occur at zero branching
time already[23]. rate limit (c0=0) like in the 2-BARW2 model where they
Very recently simulation$6,7] gave numerical evidence are equivalent and therefore the exponents on the critical
that in the two-component branching and annihilating ranpoint must be the same as those determinef/ja2]. Fur-
dom walk(2-BARW?2) the lack of particle exchange between thermore, | show that the order parameter exponent describ-
different species results in new universality classes in coning the singular behavior of the steady-state density near the
trast to widespread beliefs that bosonic field theory can weltritical point coincides with that of the 2-BARW2s model.
describe these systems. The critical exponents obtained nu- The particle system was simulated on a lattice with size
merically suggest that the location of offspring particles atL=4x10* and periodic boundary conditions for different
branching is the relevant factor that determines the criticab’s (with A =d=1— o condition. The initial condition was
behavior. In particular if the parent separates the offspringa uniformly random distribution oA’s andB’s with a total
(i) A—BAB, the steady-state density will be higher than inconcentration of 0.5. The evolution of the density was fol-
the case when they are created on the same site(iamddl  lowed until steady state has been reached ptus0* Monte
—ABB, for a given branching rate because in the formerCarlo sweepgthroughout the whole papéris measured in
case they are unable to annihilate with each other. This rednits of Monte Carlo sweepdCS) of the lattices. As Fig.
sults in different order parameter exponents for the symmett shows a phase transition occursoat= og=0 indeed.
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FIG. 1. Steady-state density as a functiona®® in the one-
dimensional 2-BARW1 model. Circles correspond g+ pg for

oaA=0pg, CIOSsSes tp,, and stars tgpg wheno = og/2.

The order parameter exponent has been determined with a

local slope analysis of the data,

In i_l
Beti(o)= P

providing an estimate for the true asymptotic behavior of the

order parameter:

npi—1

|n0’i_|n0'i,1,

B=lim Bt o).

o—0

As one can see in Fig. B.ss extrapolates tg3=0.50(1)
with a strong correction to scaling like in case of the
2-BARW?2s model[7]. The coincidence of this off-critical
exponent in addition to the equivalence of processes at thr 45
critical point assures that they belong to the same universal

ity class.
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If we destroy the symmetry between species by the
branching rates 5= og/2, we still get the same order param-
eter exponenty 8=0.50(1)] for both species(Fig. 2.
Therefore this universality class is stable with respect to cou-
pling strengths unlike colored and flavored directed percola-
tion [21].

It is also insensitive to whether or not the parity of par-
ticles is conserved, meaning that the-BAB process can
be decomposed into a sequencéeft AB, AB—BAB pro-
cesses. This may seem to be quite obvious when particle
exchange is not allowed and if locality is assumed. By the
choice of parameterd=1— ¢ in the neighborhood of the
critical point the diffusion is strong and the locality condition
is not met. Still the two processes share the same critical
behavior.

If we decouple the two systems and allow hard-core ex-
clusion only,

(o8

A—AA, (€))
B—BB, 9
A A
AA—J, BB—J, (10
d d
AT —TA, BIT—IB, (12)
0
AB<BA, (12)

the critical point will be shifted tar=0.81107(1) and DP-
like density decay can be observed on the local slopes de-
fined as
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FIG. 3. Effective decay exponeni.; as the function of 1/in
the decoupled two-component DP model. The system sikze=i§
X 10%; the decay is followed for  10° MCS. The different curves

FIG. 2. Effectiveg in the 2-BARW1 model as a function of correspond tar=0.81103, 0.81107, 0.81109, 0.81fftom bot-
%%, Different symbols denote the same as in Fig. 1.

tom to top.
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—In[p(t)/p(t/m)] model is composed of two one-dimensional subsystems fol-
(13 lowing BARW at the critical point and coupled by ladder
links. In the supercritical region, by updating an active site
(where we usen=28 usually (see Fig. 3 one can create an offspring on the other subsystem or in-
One cannot observe any relevant correction to scalingrease the inactivity level of that site. For small coupling
here; the most straight curve corresponding to the critical onstrength 6=1) the very few blocking events cannot intro-
(0=0.81107) extrapolates tev=0.158(2) which agrees duce relevant blocking on the other subsystem and the scal-
very well with the 5/v)=0.159 464(6) value of the £1  ing exponents agree with those of the coupled BARWe
DP class value that can be found in the litera{@®. Thisis  model without exclusiofi20]. For stronger coupling strength
different from the case of two species annihilating random(szz) there are more blocking possibilities resulting in
w_alk with exclu_sion, where the particle blocking causes mar4_.garwW?2s scaling exponents.
ginal perturbation to the standard decay pro¢esy. In conclusion | have shown that the one-dimensional two-
One can generalize the results by taking into account thatneies coupled BARW with exclusion and one offspring has
neighboringAA and BB offsprings decay very quickly and he same critical transition point as that of the 2-BARW2s
are therefore irrelevant for the leading scaling behavior. .| investigated earlier. The hard-core interaction itself is

Conjecture: In poupleq, one—d|m_en3|onal N-componenhot sufficient to cause a deviation in the scaling behavior
BARW systems with particle exclusion and branching pro-

cesses like ABABB. A-BAAA. ASBAC leaving be- fro.m that. of DP. A cpnjecture is given with regard to .the

hind nonreacting ne,ighboring,particles’ WhICh block each un|v.ersal|ty C"’?‘Sses in coupled BARW systems exhibiting

other, the universality class of a phase transition will be thepartICIe excluspn.

same as that of 1-BARW?2E the branching creates only  Noté added in proofRecently work by Kwon and Park

pairs that can annihilate immediately (like-ABAAB . . .), (e-print cond-mat/0010381linvestigating numerically the

the class of transition will be the same as that of the2"BARWI1 model appeared.

2-BARW2a modeMWe can also conclude that in the case of

reaction-diffusion processes where spontaneous decay is al- The author would like to thank T. Antal for the stimulat-

lowed, 2A—A, A—JJ, the blocking effect between dissimi- ing discussions and N. Menyfwfor critically reading the

lar species is irrelevant. manuscript. Support from Hungarian research fund OTKA
It is very likely that the transition of a very recently in- (Nos. T-25286 and T-235%2and from Bolyai(No. BO/

troduced ladder modd8] also belongs to this class. This 00142/99 is acknowledged.
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