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Universal behavior of one-dimensional multispecies branching and annihilating random walks
with exclusion
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A directed percolation process with two symmetric particle species exhibiting exclusion in one dimension is
investigated numerically. It is shown that if the species are coupled by branching (A→AB, B→BA), a
continuous phase transition will appear at the zero-branching-rate limit belonging to the same universality class
as that of the two component branching and annihilating random-walk model with two symmetric offsprings.
This class persists even if the branching is biased towards one of the species. If the two systems are not coupled
by branching but a hard-core interaction is allowed only the transition will occur at finite branching rate
belonging to the usual (111)-dimensional directed percolation class.
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The study of phase transitions in low dimensions is
interesting and widely investigated topic@1,2#. Research on
nonequilibrium phase transitions occurring in on
dimensional coupled systems has nowadays drawn inte
@3–14#. Several models have been found with transitions t
do not belong to the robust directed percolation~DP! class
@15–17# or to the parity conserving~PC! class@18,19# which
are the most prominent ones among one-component syst
Particle blocking which is common in one dimension has
been taken into account in field theoretical descriptions
these models yet@20,21#. It has been known for some tim
that the pair contact process@24# can be regarded as
coupled system that exhibits DP class static exponents w
the spreading ones depend on initial densities@25#. The field
theoretical investigation of Janssen@21# predicts that in
coupled DP systems the symmetry between species is
stable and generally a phase transition belongs to the cla
unidirectionally coupled DP where coupling between pairs
species is relevant in one direction only. Such systems h
been shown to describe also certain surface roughening
cesses@9,10#.

Recently we have shown@22# that in the two-componen
annihilating random walk (AA→B, BB→B) owing to the
hard-core interaction of particles dynamical exponents
nonuniversal. Some consequences of hard-core effects
random walks in one dimension have been known for so
time already@23#.

Very recently simulations@6,7# gave numerical evidenc
that in the two-component branching and annihilating r
dom walk~2-BARW2! the lack of particle exchange betwee
different species results in new universality classes in c
trast to widespread beliefs that bosonic field theory can w
describe these systems. The critical exponents obtained
merically suggest that the location of offspring particles
branching is the relevant factor that determines the crit
behavior. In particular if the parent separates the offspri
~i! A→BAB, the steady-state density will be higher than
the case when they are created on the same site, and~ii ! A
→ABB, for a given branching rate because in the form
case they are unable to annihilate with each other. This
sults in different order parameter exponents for the symm
1063-651X/2001/63~5!/056108~3!/$20.00 63 0561
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ric ~2-BARW2s! and the asymmetric~2-BARW2a! cases
@bs51/2 vsba52 for ~i! and ~ii !, respectively#.

Hard-core effects are conjectured to cause a series of
universality classes in one dimension@6#. In this paper I
point out that probably only a few universality class
emerge as the consequence of particle exclusion, bec
other symmetries and conservation laws~like that of the PC
class! will become irrelevant.

In the present study first I show that in case of the tw
component single off-spring BARW model~2-BARW1!, de-
fined as

A →
sA/2

AB, A →
sA/2

BA, ~1!

B →
sB/2

BA, B →
sB/2

AB, ~2!

AA→
l

B, BB→
l

B, ~3!

AB↔
d

BA, BB↔
d

BB, ~4!

AB↔
0

BA, ~5!

a continuous phase transition will occur at zero branch
rate limit (s50) like in the 2-BARW2 model where they
are equivalent and therefore the exponents on the crit
point must be the same as those determined in@7,22#. Fur-
thermore, I show that the order parameter exponent desc
ing the singular behavior of the steady-state density near
critical point coincides with that of the 2-BARW2s model

The particle system was simulated on a lattice with s
L543104 and periodic boundary conditions for differen
s ’s ~with l5d512s condition!. The initial condition was
a uniformly random distribution ofA’s andB’s with a total
concentration of 0.5. The evolution of the density was f
lowed until steady state has been reached plust;104 Monte
Carlo sweeps@throughout the whole papert is measured in
units of Monte Carlo sweeps~MCS! of the lattices#. As Fig.
1 shows a phase transition occurs atsA5sB50 indeed.
©2001 The American Physical Society08-1
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The order parameter exponent has been determined w
local slope analysis of the data,

be f f~s!5
ln r i2 ln r i 21

ln s i2 ln s i 21
, ~6!

providing an estimate for the true asymptotic behavior of
order parameter:

b5 lim
s→0

be f f~s!. ~7!

As one can see in Fig. 2be f f extrapolates tob50.50(1)
with a strong correction to scaling like in case of t
2-BARW2s model@7#. The coincidence of this off-critica
exponent in addition to the equivalence of processes at
critical point assures that they belong to the same univer
ity class.

FIG. 1. Steady-state density as a function ofs0.5 in the one-
dimensional 2-BARW1 model. Circles correspond torA1rB for
sA5sB , crosses torA , and stars torB whensA5sB/2.

FIG. 2. Effectiveb in the 2-BARW1 model as a function o
s0.5. Different symbols denote the same as in Fig. 1.
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If we destroy the symmetry between species by
branching ratessA5sB/2, we still get the same order param
eter exponents@b50.50(1)# for both species~Fig. 2!.
Therefore this universality class is stable with respect to c
pling strengths unlike colored and flavored directed perco
tion @21#.

It is also insensitive to whether or not the parity of pa
ticles is conserved, meaning that theA→BAB process can
be decomposed into a sequence ofA→AB, AB→BAB pro-
cesses. This may seem to be quite obvious when par
exchange is not allowed and if locality is assumed. By
choice of parametersd512s in the neighborhood of the
critical point the diffusion is strong and the locality conditio
is not met. Still the two processes share the same crit
behavior.

If we decouple the two systems and allow hard-core
clusion only,

A→
s

AA, ~8!

B→
s

BB, ~9!

AA→
l

B, BB→
l

B, ~10!

AB↔
d

BA, BB↔
d

BB, ~11!

AB↔
0

BA, ~12!

the critical point will be shifted tos50.811 07(1) and DP-
like density decay can be observed on the local slopes
fined as

FIG. 3. Effective decay exponentae f f as the function of 1/t in
the decoupled two-component DP model. The system size isL54
3104; the decay is followed for 23105 MCS. The different curves
correspond tos50.81103, 0.81107, 0.81109, 0.8111~from bot-
tom to top!.
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ae f f~ t !5
2 ln@r~ t !/r~ t/m!#

ln~m!
~13!

~where we usem58 usually! ~see Fig. 3!.
One cannot observe any relevant correction to sca

here; the most straight curve corresponding to the critical
(s50.81107) extrapolates toa50.158(2) which agrees
very well with the b/n uu50.159 464(6) value of the 111
DP class value that can be found in the literature@26#. This is
different from the case of two species annihilating rand
walk with exclusion, where the particle blocking causes m
ginal perturbation to the standard decay process@22#.

One can generalize the results by taking into account
neighboringAA and BB offsprings decay very quickly and
are therefore irrelevant for the leading scaling behavior.

Conjecture: In coupled, one-dimensional N-compon
BARW systems with particle exclusion and branching p
cesses like A→BABB, A→BAAA, A→BAC, . . . ,leaving be-
hind nonreacting neighboring particles which block ea
other, the universality class of a phase transition will be t
same as that of 1-BARW2s. If the branching creates only
pairs that can annihilate immediately (like A→BAAB, . . . ),
the class of transition will be the same as that of t
2-BARW2a model. We can also conclude that in the case
reaction-diffusion processes where spontaneous decay i
lowed, 2A→A, A→B, the blocking effect between dissim
lar species is irrelevant.

It is very likely that the transition of a very recently in
troduced ladder model@8# also belongs to this class. Th
s
e,

v

d

rs
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model is composed of two one-dimensional subsystems
lowing BARW at the critical point and coupled by ladde
links. In the supercritical region, by updating an active s
one can create an offspring on the other subsystem or
crease the inactivity level of that site. For small coupli
strength (s51) the very few blocking events cannot intro
duce relevant blocking on the other subsystem and the s
ing exponents agree with those of the coupled BARW
model without exclusion@20#. For stronger coupling strengt
(s52) there are more blocking possibilities resulting
1-BARW2s scaling exponents.

In conclusion I have shown that the one-dimensional tw
species coupled BARW with exclusion and one offspring h
the same critical transition point as that of the 2-BARW
model investigated earlier. The hard-core interaction itsel
not sufficient to cause a deviation in the scaling behav
from that of DP. A conjecture is given with regard to th
universality classes in coupled BARW systems exhibiti
particle exclusion.

Note added in proof.Recently work by Kwon and Park
~e-print cond-mat/0010381! investigating numerically the
2-BARW1 model appeared.
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ing discussions and N. Menyha´rd for critically reading the
manuscript. Support from Hungarian research fund OTK
~Nos. T-25286 and T-23552! and from Bolyai ~No. BO/
00142/99! is acknowledged.
.

@1# J. Marro and R. Dickman,Nonequilibrium Phase Transition
in Lattice Models~Cambridge University Press, Cambridg
1999!.

@2# H. Hinrichsen, Adv. Phys.49, 815 ~2000!.
@3# M. J. Howard and U. C. Ta¨uber, J. Phys. A30, 7721~1997!.
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